
ME 7247: Advanced Control Systems Fall 2022–23

Lecture 09: Marginal and Conditional Distributions
Friday October 9, 2022

Lecturer: Laurent Lessard Scribe: Rushikesh Sankhye

The previous lecture covered probability distributions, random vectors, Gaussian distributions and
their transformations, expectations and covariance. This lecture covers marginal distributions,
conditional distributions and joint distributions in the context of transformations on vectors in
control and estimation problems.

1 Introduction

1.1 Recap

Consider a vector x that is normally distributed with mean µ and a covariance Σ:

x ∼ N (µ,Σ)

An affine transformation of x will also be normally distributed, given by:

Ax+ b ∼ N (Aµ+ b, AΣAT)

1.2 Joint Distribution

If we have a larger vector that we partition into sub-vectors x and y, the distribution of [ xy ] is
called the joint distribution. Typically x and y will serve different role. For example, y may be
a measurement, and x may be the variable we’re trying to estimate. If the joint distribution is
normal, and the density function is f(x, y), we write:[

x
y

]
∼ N

([
µx

µy

]
,

[
Σx Σxy

Σxy Σx

])

1.3 Marginal Distribution

Given a joint distribution (x, y), if we consider the distribution of x (just ignore y), this is called the
marginal distribution of x. Similarly, the distribution of y is called the marginal distribution of y.
We write these density functions as fx(x) and fy(y), respectively. They can be found by partially
integrating the joint distribution:

fx(x) =

∫
f(x, y) dy

fy(y) =

∫
f(x, y) dx

1



1.4 Conditional Distribution

We can also consider the case where y is known, and we want to know what the distribution of x
is given that y is what we measured it to be. We say this is the distribution of x conditioned on y.
The conditional pdf is fx|y(x, y). Although it depends on y, it is a distribution in just x, so∫

fx|y(x, y) dx = 1 for all y. (1)

The conditional distribution is a scaled version of the joint distribution. In order for the conditional
pdf to integrate to 1, the scale factor must be the marginal with respect to y. That is,

fx|y(x, y) =
f(x, y)

fy(y)
(2)

This is known as Bayes’ rule.

2 Completing the square

The high-school approach for minimizing a quadratic function is called completing the square. We
will derive a matrix version of this result. Let’s start with a review of the standard scalar version.
Say we have a quadratic of the form ax2 + 2bxy + dy2 = 0. The goal is to find the value of x that
minimizes the expression. We do this by factoring out a (assuming a ̸= 0), then manipulating the
expression to make a square appear. Here are the steps:

ax2 + 2bxy + dy2 = a

(
x2 +

2by

a
x

)
+ dy2

= a

(
x+

by

a

)2

− b2y2

a
+ dy2

= a

(
x+

by

a

)2

+

(
d− b2

a

)
y2

Only the first term depends on x. Depending on the sign of a, either it is positive (in which case
the minimum is zero), or it is negative (in which case the minimum is unbounded).

xopt =

{
−by
a if a > 0

no solution if a < 0

Note that the x that achieves the minimum value is a linear function of y. Meanwhile, the minimum
value is a quadratic function of y given by (d− b2

a )y
2.

2.1 Completing squares: Matrix version

Given vectors x and y, the matrix version of completing squares can be written as

minimize
x

[
x
y

]T [
A B
BT D

] [
x
y

]
= xTAx+ 2xTBy + yTDy
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Assuming A is invertible, the right hand side can be re-written as

minimize
x

(
x+A−1By

)T
A
(
x+A−1By

)
+ yT

(
D −BTA−1B

)
y

To minimize this expression, substitute x = −A−1By. The minimum value is yT(D − BTA−1B)y.
The optimal x is a linear function of y, and the optimal value is a quadratic function of y.

3 Matrix inversion lemma

Given a block 2 × 2 matrix where the (1, 1) and (2, 2) blocks are square, we can write down the
following factorizations, depending on whether A is invertible, or D is invertible, respectively:[

A B
C D

]
=

[
I 0

CA−1 I

] [
A 0
0 D − CA−1B

] [
I A−1B
0 I

]
(block-LDU factorization) (3a)[

A B
C D

]
=

[
I BD−1

0 I

] [
A−BD−1C 0

0 D

] [
I 0

D−1C I

]
(block-UDL factorization) (3b)

Now we can use the useful fact that block-upper or block-lower triangular matrices with identities
in the diagonal blocks can be easily inverted:[

I 0
X I

]−1

=

[
I 0

−X I

]
and

[
I X
0 I

]−1

=

[
I −X
0 I

]
Inverting both sides of Eqs. (3a) and (3b), and applying the above formula, we obtain:[

A B
C D

]−1

=

[
I −A−1B
0 I

] [
A−1 0

0
(
D − CA−1B

)−1

] [
I 0

−CA−1 I

]
(4a)[

A B
C D

]−1

=

[
I 0

−D−1C I

] [(
A−BD−1C

)−1
0

0 D−1

] [
I −BD−1

0 I

]
(4b)

Expressions Eqs. (4a) and (4b) are two equivalent ways to compute the inverse of a block matrix. If
we take the (1, 1) blocks of both sides, we obtain the well-known Matrix Inversion Lemma (MIL).
It is also called the Woodbury identity, the Sherman–Morrison formula, or the Sherman–Morrison–
Woodbury identity. (

A−BD−1C
)−1

= A−1 +A−1B
(
D − CA−1B

)−1
CA−1 (5)

The MIL has many uses in computational linear algebra. The main use is when we have a matrix
A whose inverse we have already calculated, and we would like to calculate the inverse of A+ uvT

(a rank-one update to the matrix A). Without any help, we would have to calculate (A + uvT)−1

from scratch. It turns out we can leverage the fact that we already know A−1. Applying MIL with
B = u, D = −1, C = vT, we obtain:(

A+ uvT
)−1

= A−1 −A−1u
(
1 + vTA−1u

)−1
vTA−1
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Now use the fact that vTA−1u is a scalar (1 × 1 matrix), so we can take its inverse by simple
division. The result is:(

A+ uvT
)−1

= A−1 − 1

1 + vTA−1u

(
A−1u

)(
vTA−1

)
In words, this says that the inverse of a rank-one update of A can be computed as a rank-one update
to the inverse of A. This is called the rank-one update formula. We will later see that this formula
is useful in recursive estimation.

4 Marginal Distribution

Let’s assume that x and y have a joint Gaussian distribution.[
x
y

]
∼ N

([
µx

µy

]
,

[
Σx Σxy

Σyx Σy

])
(6)

Remember that covariance matrices are always positive definite. The marginal distribution is

fx(x) =

∫
f(x, y) dy

The expression for the joint distribution can be expanded as

f(x, y) = (const) · exp

(
−1

2

[
x− µx

y − µy

]T [
Σx Σxy

Σyx Σy

]−1 [
x− µx

y − µy

])

To lighten the notation, let x̃ := x− µx and ỹ := y − µy.

f(x, y) = (const) · exp

(
−1

2

[
x̃
ỹ

]T [
Σx Σxy

Σyx Σy

]−1 [
x̃
ỹ

])

Using the block-LDU factorization (4a), we can rewrite the joint distribution as:

f(x, y) = (const) · exp

(
−1

2

[
x̃

ỹ − ΣyxΣ
−1
x x̃

]T [
Σ−1
x 0
0 (Σy − ΣyxΣ

−1
x Σxy)

−1

] [
x̃

ỹ − ΣyxΣ
−1
x x̃

])

= (const) · exp
(
−1

2
x̃TΣ−1

x x̃

)
· exp

(
−1

2
(ỹ − ΣyxΣ

−1
x x̃)T (Σy − ΣyxΣ

−1
x Σxy)

−1(ỹ − ΣyxΣ
−1
x x̃)

)
Now we evaluate fx(x) =

∫
f(x, y) dy. The first term does not contain y, so we can factor it out

of the integral. The second term integrates to a constant (independent of x) because x only serves
to shift the mean of the Gaussian pdf. We are integrating over the whole space of y’s, so the shift
does not affect the value of the integral. We conclude that

fx(x) = (const) · exp
(
−1

2
x̃TΣ−1

x x̃

)
Consequently, we have x ∼ N (µx,Σx).
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4.1 Alternate Proof

Remember, if x ∼ N (µ,Σ) then

Ax+ b ∼ N (Aµ+ b, AΣAT) (7)

Suppose (x, y) are jointly distributed as in (6). Then,

[
I 0

] [x
y

]
= x (8)

Substituting Eq. (8) in Eq. (7) we can express the distribution of x as

x ∼ N
([

I 0
] [µx

µy

]
,
[
I 0

] [Σx Σxy

Σyx Σy

] [
I
0

])
,

which simplifies to x ∼ N (µx,Σx). Although this proof is shorter, it relies on (7). The previous
proof has the added benefit of demonstrating that the marginal of jointly Gaussian random variables
is once again Gaussian.

5 Conditional Distribution

We will now derive the conditional distribution given a joint distribution of the form

f(x, y) = (const) · exp

(
−1

2

[
x̃
ỹ

]T [
Σx Σxy

Σyx Σy

]−1 [
x̃
ỹ

])

Using the block-UDL factorization (4b) we get

f(x, y)

= (const) · exp

(
−1

2

[
x̃− ΣxyΣ

−1
y ỹ

ỹ

]T [
(Σx − ΣxyΣ

−1
y Σyx)

−1 0

0 Σ−1
y

] [
x̃− ΣxyΣ

−1
y ỹ

ỹ

])

= (const) · exp
(
−1

2
ỹTΣ−1

y ỹ

)
· exp

[
−1

2
(x̃− ΣxyΣ

−1
y ỹ)T (Σx − ΣxyΣ

−1
y Σyx)

−1(x̃− ΣxyΣ
−1
y ỹ)

]
Notice that the left exponential term in the equation is the marginal distribution fy(y). Dividing
by this we are left with

fx|y(x, y) =
f(x, y)

fy(y)
= (const) · exp

[
−1

2
(x̃− ΣxyΣ

−1
y ỹ)T (Σx − ΣxyΣ

−1
y Σyx)

−1(x̃− ΣxyΣ
−1
y ỹ)

]
From this equation we can notice that the conditional distribution is normally distributed and

fx|y(x, y) ∼ N
(
µx +ΣxyΣ

−1
y (y − µy),Σx − ΣxyΣ

−1
y Σyx

)
There are a few key observations that can be made about the conditional distribution
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• The conditional covariance decreases (compared to the marginal distribution) after you make
measurements. It is important to note that both the conditional and marginal covariance are
equal only when Σxy is 0. This happens when x and y are uncorrelated.

Cov(x) ⪰ Cov(x | y)
Cov(x)−1 ⪯ Cov(x | y)−1

The second equation shows that one uncertainty ellipsoid is contained within the other. Specif-
ically, if we consider the confidence ellipsoid with confidence p, then α = F−1

χ2
n
(p) and

Σ−1
1 ⪯ Σ−1

2 =⇒ xTΣ−1
1 ≤ xTΣ−1

2 x

=⇒ xTΣ−1
2 x ≤ α =⇒ xTΣ−1

1 x ≤ α

=⇒
{
x ∈ Rn

∣∣∣ xTΣ−1
2 x ≤ α

}
⊆
{
x ∈ Rn

∣∣∣ xTΣ−1
1 x ≤ α

}
Therefore, if Σ−1

2 is larger than Σ−1
1 , then the confidence ellipsoid for Σ2 is contained inside

the confidence ellipsoid for Σ1. Here, Σ1 = Cov(x) and Σ2 = Cov(x | y).

• The mean of the conditional distribution depends explicitly on new measurements whereas
the conditional covariance does not depend on the new measurements. This means that
we can know how our error will change once we receive our measurements, even before the
measurements arrive. This is a unique property of Gaussian distributions and it does not hold
in general for non-Gaussian distributions.
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